
Universitat Politècnica de Catalunya

Master in Artificial Intelligence

Computational Intelligence

Supervised classification

exercice

Authors:
Miquel Perelló Nieto

Marc Albert Garcia Gonzalo

Date:
December 21, 2012

Contents

1 Abstract 2

2 Introduction 3

2.1 Support Vector Machine . 3

2.2 Soft margin . 3

2.3 Kernel . 3

2.4 Primal and Dual forms . 3

3 Specification of the problem and organization of the software 4

3.1 Problem approach . 4

3.1.1 Multiclass Support Vector Machine . 4

3.2 Technology . 5

3.3 Code structure . 5

3.3.1 / . 5

3.3.2 /datasets/ . 6

3.3.3 /svm train/low level/ . 6

3.3.4 /svm train/ . 7

3.3.5 /svm test/low level/ . 7

3.3.6 /kernels/ . 7

4 Experiments 8

4.1 Wisconsin Breast Cancer . 8

4.2 Pima Diabetes . 9

4.3 Heart StatLog . 9

5 Conclusions and future work 10

1

1 Abstract

This document describes the implementation and experimentation with different kinds of
Support Vector Machines. These kinds include the linearly separable version, and the soft
margin version. For both cases, the primal and dual form are considered. Also, the use of
different kinds of kernels is studyied.

2

2 Introduction

2.1 Support Vector Machine

Support Vector Machine is a linear classification model, which main goal is to maximize the
margin between the separator hyperplane, and the data points.

Original Support Vector Machines were designed for data which could be linearly separable.

It has been proved, that the Support Vector Machine model has lower complexity than similar
models, as the solution only depends on a reduced set of the training data. These instances are
known with the name of Support Vectors.

2.2 Soft margin

In 1995, Vapnik and Cortes introduced a new version of Support Vector Machines which are
able to deal with non linearly separable data. This version is known as the soft margin version,
and allows violations of the margin.

The relative importance given to the maximitzation of the margin, and to the avoidance of
margin violations is controlled by a C parameter of the model.

2.3 Kernel

Support Vector Machines are commonly used using kernels. Kernels allow applying
transformations to the data, to a higher dimension (even infinite), but making it computational
feasible. This is possible because the operations with the transformed data are never done
explicitely. Operations in the calculations of the Support Vector Machine only need the result
of scalar products of the transformed data among them, and the dimensionality of the scalar
product does not depend on the dimensionality of the transformed data, but on the number of
instances.

2.4 Primal and Dual forms

There are two different formulations of the Support Vector Machines. The primal formulation
is the one derived from the Support Vector Machine theory. The dual formulation is obtained
after applying Lagrangian theory, and it can be solved as a Quadratic Programming problem.

3

3 Specification of the problem and organization of the

software

3.1 Problem approach

For this project, we have implemented Support Vector Machines sequentially, so we have seen
in practice all the different formulations step by step.

Next it is listed the sequence followed for the implementation.

1. The hard margin case on its primal form

2. The soft margin case

3. Dual form of both hard and soft margin with linear kernel

4. Radial Basis Function and Polynomial kernels

5. Multiclass classification

While all the code is attached, in practice, it is not likely to be useful most of it. Specifically,
the hard margin case, and the primal form, because are limiting and slower than the soft
margin dual form. For the experiments, only this last version has been used.

3.1.1 Multiclass Support Vector Machine

In the project we adapted all the code to solve problems with multiple classes. First of all we
create one set of labels for each class of the dataset. It is possible to create this with one
classifier less than the number of classes. With one classifier less the last class is selected in the
case that non of the others have predicted the point.

Our approach is to create this new labels for each class. Each new labels contains negative ones
to all the other classes and positive ones for his class. Then is trained one support vector
machine for each class with his respective new labels. The SVM’s can be of any type of the
commenteds above: without kernel or with linear, polynomial and Radial Basis Function
kernels. It is possible also to select soft or hard margin. Once all SVM are trained, we can
predict new instances with the one-vs-all approach. It means that in each of the SVM’s the
new instance is predicted with one class vs all the others. We get all the predictions and the
one with greatter results is choosed.

In the implemented code first of all we can choose with internal variables if we want to solve
the problem with kenels or not. Wich kernel we want and their parameters. Once done we can
select some points by hand for four classes.

4

This program will take by default 80% of the data as training and remaining for test. Then will
train the four SVM’s and predict the test points. It is possible to see in the figure 1 one example
with RBF kernel and sigma 0.1. The result was 0.975 of accuracy. In the figure from left to
right and upper to bottom are the predictions for the first, second, third and fourth class. The
higher values are representeds in red. And the selected class is the higer in the computed point.

Figure 1: Multiclass support vector machine representation

3.2 Technology

This project has been developed using Matlab (version 7.12).

Only the CVX module has been used, as an external plugin.

3.3 Code structure

3.3.1 /

Main files of the project, to be executed directly.

main.m : Trains models for three different datasets, with different parameters, and calculates
the accuracy of the model using 10-fold Cross Validation.

main multiclass.m : Trains a model for the multiclass dataset problem, with customizable
parameters, giving the accuracy by separating some data for testing, and plots the result.

5

3.3.2 /datasets/

Functions for loading different datasets.

arffload.m : Function for parsin ARFF (Weka) files

simple.m : Very simple custom dataset with only 4 linearly separable instances

picker.m : Creates a 2D dataset by selecting the points in a Matlab plot

picker multiclass.m : Creates a 2D dataset by selecting the points in a Matlab plot, for the
multiclass case

iris.m : Fisher’s iris dataset, loaded from Matlab’s builtin, and formatted to be used with
Support Vector Machines, merging two classes to be used as a binary classification
problem

breast w.m : Loads the Wisconsin Breast Cancer dataset from an ARFF file, and formats it
to be used for training and testing a Support Vector Machine

pima diabetes.m : Loads the Pima Diabetes dataset, with the format to be used with the
Support Vector Machine

heart statlog.m : Loads the Heart StatLog dataset, with the format to be used with the
Support Vector Machine

3.3.3 /svm train/low level/

Functions for calculating the optimal parameters of the Support Vector Machine. These
functions are the low level code, and do not include the calculation of the kernel matrix. These
functions use the CVX Matlab package.

train svm hard margin primal.m : Function for training the Support Vector Machine,
with hard margin (linear separability assumed), using the primal definition

train svm soft margin primal.m : Function for training the Support Vector Machine, with
soft margin (margin violations allowed), using the primal definition

train svm hard margin dual.m : Function for training the Support Vector Machine, with
hard margin (linear separability assumed), using the primal definition

train svm soft margin dual.m : Function for training the Support Vector Machine, with
soft margin (margin violations allowed), using the primal definition

6

3.3.4 /svm train/

Functions that return the Support Vector Machine model, using the low level functions, and
providing a higher layer interface.

train svm none.m : Function that resturns a SVM model, using the primal form, and
without using any kernel.

train svm linear.m : Function that resturns a SVM model, using the dual form, using a
linear kernel.

train svm rbf.m : Function that resturns a SVM model, using the dual form, using a Radial
Basis Function kernel.

train svm polynomial.m : Function that resturns a SVM model, using the dual form, using
a polynomial kernel.

3.3.5 /svm test/low level/

Low level functions to classify data using a Support Vector Machine model previously trained.

test svm w.m : Classifies data using the SVM primal form, without using a kernel. Uses the
weights and the bias.

test svm svs.m : Classifies data using the SVM dual form, using the same kernel as used for
training, the Support Vectors, the alphas (Lagrange multipliers) optimized in the
training, and the bias.

test svm multiclass.m : Classifies datasets with more than two classes using the dual form
approach.

3.3.6 /kernels/

Kernel functions.

kernel linear.m : Linear kernel

kernel rbf.m : Radial Basis Function kernel, with parametrizable Gaussian sigma

kernel polynomial.m : Polynomial kernel with parametrizable polynomial degree

7

4 Experiments

For testing the performane of our custom implementation of the Support Vector Machine
model, we have develop a set of experiments, in order to evaluate that it is working correctly.

We have used three different common Machine Learning datasets. All them are binary
classification problems.

Classification tests have been performed using 10-fold Cross Validation. Mean accuracy and
standard deviation among folds is reported.

We have also trained Matlab’s implementation of the Support Vector Machine, and we used the
accuracy obtained with this implementation as a benchmark.

4.1 Wisconsin Breast Cancer

This data set contains information about the results of tests on breast cancer based on visual
characteristics of the result of a Fine Needle Aspiration. Data is gathered by taking measures
from a microscope scan.

There are 699 samples. Attributes are visual features of the cells, such as radius, perimeter,
area, symmetry, etc.

Data set contains missing values. We imputed them using Matlab’s KNN function for
imputation.

Table 1: Wisconsin Breast Cancer results

Kernel Our Accuracy Matlab Accuracy Standard deviation

C = 0.25 C = 1 C = 4 C = 0.25 C = 1 C = 4 C = 0.25 C = 1 C = 4

Linear 0.94859 0.94996 0.96404 0.96404 0.96402 0.96549 0.040991 0.041094 0.019739

Polynomial (order 2) 0.93409 0.92686 0.93105 0.94394 0.94269 0.93694 0.020835 0.023495 0.028839

RBF (sigma 0.25) 0.62009 0.73224 0.73224 0.75424 0.85690 0.88993 0.104410 0.043951 0.043951

RBF (sigma 1) 0.85550 0.91559 0.92415 0.95132 0.95400 0.96118 0.032371 0.020555 0.018033

RBF (sigma 4) 0.96398 0.96106 0.95547 0.96831 0.96833 0.96551 0.021106 0.024122 0.018887

As we can observe, our implementation of the Support Vector Machine works fine with this
dataset. Our predictions are very close to the ones obtained with Matlab implementation, and
the variance of the predictions is low.

8

4.2 Pima Diabetes

This data set contains information about female Pima Indian individuals. Pima Indians have a
higher rate of diabetes than normal, and this data set is used to study the causes.

There are 768 individuals on the data set. Attributes contain medical information such as the
age, the number of times the individual was pregnant, and the results of several medical tests.

Table 2: Pima Diabetes results

Kernel Our Accuracy Matlab Accuracy Standard deviation

C = 0.25 C = 1 C = 4 C = 0.25 C = 1 C = 4 C = 0.25 C = 1 C = 4

Linear 0.73438 0.73442 0.74358 0.75532 0.75537 0.75537 0.11283 0.11132 0.10840

Polynomial (order 2) N/A N/A N/A N/A N/A N/A N/A N/A N/A

RBF (sigma 0.25) 0.34894 0.47352 N/A 0.64843 0.64843 N/A 0.0095972 0.15706 N/A

RBF (sigma 1) 0.34894 0.38548 0.65106 0.66685 0.73205 0.70323 0.009597 0.027144 0.009597

RBF (sigma 4) 0.34894 0.63118 0.65754 0.73981 0.75002 0.74479 0.009597 0.075238 0.020859

For this dataset, we observe that there are some cases where our model is unable to give a
prediction. This is caused by the optimization, which is returning NaN for the optimized
variables. We could not find a reason for it.

For the cases where it was possible to predict, we can see how in the linear case the variability
on the predictions gets worse, as the accuracy also drops. This is probably normal, as the
dataset is harder to classify.

For the Radial Basis Function kernel, we can observe how in this case, and for some
parameters, our estimation accuracy drops radically compared to the Matlab model. We do not
see a reason for this, but it is probably produced on the optimization.

Considering that it is a binary problem, classifing with an accuracy lower than 50%, the model
is worse than a model which classifies randomly (assuming that there are the same number of
individuals per class).

4.3 Heart StatLog

This dataset contains 270 instances about patients, regarding if they have a heart disease or
not.

There are 17 numerical attributes with demographical and medical data about the individuals.

For this dataset, our results are similar to the previous case. For the linear case, the model is
performing almost as good as Matlab’s, and with low variance.

Again, for the polynomial, the optimazer is unable to find the optimal values. And for the
RBF, we can see how the predictions are performing poorly.

9

Table 3: Hear StatLog results

Kernel Our Accuracy Matlab Accuracy Standard deviation

C = 0.25 C = 1 C = 4 C = 0.25 C = 1 C = 4 C = 0.25 C = 1 C = 4

Linear 0.82593 0.83704 0.83704 0.84074 0.83704 0.84074 0.042945 0.055761 0.055761

Polynomial (order 2) N/A N/A N/A N/A N/A N/A N/A N/A N/A

RBF (sigma 0.25) 0.44444 0.44444 0.55556 0.46667 0.55556 0.55556 0.000000 0.000000 0.000000

RBF (sigma 1) 0.44444 0.45556 0.55556 0.71481 0.72222 0.72593 0.000000 0.024998 0.000000

RBF (sigma 4) 0.44444 0.57778 0.58148 0.84074 0.83704 0.81481 0.000000 0.11608 0.035136

5 Conclusions and future work

In this project, he have seen the all theory inside a Support Vector Machine classifier. Its
different parts, from the margin optimization, to the kernels.

We have seen the differences in the implementation between the hard and soft margin cases.
Also, the differences between the different kind of kernels.

On the classification, we have seen how the dual form makes its predictions based only on
information about the support vectors and the bias. This reduces the complexity of the model,
as we can make the classification on a infinite dimension space, without requiring an infinite
number of weights, but with a finite, and luckily reduce set of support vectors.

On the experiments, we observed how our implementation is sensitive to the datasets, not
being able to predict in some cases (mostly with the polynomial kernel), and how it predicts
poorly, in some cases with the RBF kernel. We believe that this is caused on the optimization
part, but further research would be necessary.

Some of the possible future work regarding this project is listed next.

• Further research on the reasons why CVX does not get a optimal solution

• Refactoring of the code, so passing kernels, and possible parameters among the functions
is done in a cleaner way

• Automatically detection of datasets with more than two classes, so the one-vs-all model is
used when needed

10

References

[1] Support Vector Machines Explained, Tristan Fletcher, University College London, 2009

11

