
RESEARCH PROJECT IN COMPUTER AND INFORMATION SCIENCE, AUGUST 2014 1

Unsupervised Learning of Multiple Languages
Using Recurrent Neural Networks
Miquel Perelló Nieto, Mathias Berglund, and Tapani Raiko

Deep Learning and Bayesian Modeling group,
Computer Science Department, Aalto University School of Science
{miquel.perellonieto, mathias.berglund, tapani.raiko} @aalto.fi

Abstract—We explore the capability of Recurrent Neural Networks (RNNs) to capture the statistics of hidden information
on textual data. In this work, we focus on the identity of the text language as a hidden variable. We train different RNNs on
a corpus containing text in different languages, without providing explicit information about the specific identity of the text.
We compare RNNs and N-grams in terms of their prediction error, space complexity, and scalability to larger corpora.

Keywords—Machine learning, connectionism and neural nets, text analysis, language generation, information theory,
natural language modeling.

F

INTRODUCTION

R ECURRENT Neural Networks (RNNs) are
a special type of Artificial Neural Net-

work (ANN) in which some connections form
directed cycles. These loop connections make
them well suited for time-domain prediction
tasks. This is because they can store an internal
memory of previous time steps to help on the
new predictions. It is this ability that has led
to the extensive use of RNNs on tasks such as
handwriting recognition (Graves et al. [1]) and
speech recognition (Graves et al. [2]). Because
of the depth of their loop connections, they
are extremely difficult models to train (Bengio
et al. [3]). The application of backpropagation
through several layers causes the gradients to
tend to zero or infinity. This is called the “van-
ishing/exploding gradients problem”. However, re-
cently, approaches to train Deep Neural Net-
works (DNNs) have achieved state-of-the-art
performance. In the context of image classifica-
tion, a Deep Belief Network (DBN) was trained
with an initial unsupervised phase and a final
supervised phase that fine-tuned the parame-
ters (Hinton et al. [4]). Furthermore, using a
new adaptation of Hessian-Free Optimization
Martens et al. ([5], [6]) managed to train DNNs
and RNNs on solving various synthetic prob-
lems known to be effectively impossible using

gradient descent (Hochreiter [7]). Using the
same learning approach, Sutskever et al. [6]
trained a large Multiplicative Recurrent Neural
Network (MRNN) for the text prediction task at
the character-level, achieving very good results.

Further work on DNNs has shown that up-
per hidden units can capture higher order rep-
resentations of the original data, being able to
create a new multi-dimensional space where
similar objects can be clustered more easily. As
a simple example, from raw pixels of an image,
upper layers are able to extract edges, object
parts and finally entire objects (from bottom to
top layers)(See Zeiler et al [8] [9], Simonyan et
al. [10]).

Since it is possible to view an RNN as a very
deep architecture, our focus in this work is on
extracting, in an unsupervised way, some ab-
stract text representation from the raw charac-
ters. One of these hidden representations could
be the identity of the language. In our experi-
ments, we train RNNs using text on different
languages (in this work Spanish and English)
and we demonstrate that RNNs can achieve
very good results, comparable to the best N-
gram models with add-one smoothing.

RESEARCH PROJECT IN COMPUTER AND INFORMATION SCIENCE, AUGUST 2014 2

1 N-GRAM MODELS

N-grams are sequences of n consecutive el-
ements. In text analysis some of the most
common levels of analysis, are at the word
and/or character level. These two variants do
not need any external knowledge about stems
or syllables. At the word level, all N-grams are
composed of consecutive words. In this case,
the number of tokens can be in the order of mil-
lions. For example, the second edition of the 20-
volume Oxford English dictionary contains full
entries for 171,476 different words, excluding
the different word inflections that may exist.
An approximation of the possible number of
tokens can be seen in Brants et al. [11], where
the authors analyse publicly accessible web
pages and retrieve approximately one trillion
word tokens.

Other variants use character-level analysis,
where, each N-gram is composed of a con-
secutive string of characters. In this case, the
number of combinations is not as large as that
of word-level analysis, but it still grows expo-
nentially with respect to n, the size of the N-
grams.

To create these models, we need to count all
the possible occurrences of patterns of size n
in a corpus. One of the optimal ways to store
their frequencies is to use a look-up table. The
benefit of this method is that each pattern is
hashed and then stored or retrieved in constant
time.

With all the corpus frequencies available, it
is possible to compute the maximum likelihood
estimate (MLE) for each of the possible charac-
ters.

P (cn|c1, . . . , cn−1) =
count(c1, . . . , cn)

count(c1, . . . , cn−1)
(1)

Where ci corresponds to the i-th character of
the pattern.

However, using MLE could cause problems
on non-existent patterns in the training set, but
smoothing techniques can be used to overcome
that problem. We opted to use add-one smooth-
ing:

P (cn|c1, . . . , cn−1) =
count(c1, . . . , cn) + 1

count(c1, . . . , cn−1) + V
(2)

Where V is the vocabulary size.
This and other smoothing techniques can be

seen in appendix ??.

2 RECURRENT NEURAL NETWORKS

The first RNN appeared in 1982 by Hop-
field [12]. This RNN was based on minimiz-
ing an internal energy state, and was able to
store memories in a biological inspired manner.
These kind of RNNs are called Hopfield Net-
works. Since then, multiple architectures have
emerged: Simple Recurrent Networks (SRN) by
Elman and Jordan 1991 [13], Continuous-time
RNN (CTRNN) by Funahashi et. al. 1993 [14],
Long Short Term Memory (LSTM) network
by Hochreiter and Schmidhuber 1997 [15], Bi-
directional RNN (BRNN) by Schuster and Pali-
wal 1997 [16], Echo State Network (ESN) by
Jaeger and Hass 2004 [17].

In some of these networks, the real problem
is in training them. Some of them use backprop-
agation as a learning method but Hochreiter [7]
and Bengio et. al. [3] showed that the gradient
decays (or explodes) exponentially in deep net-
works. Some solutions to this problem involves
using sparsified connections and Hessian Free
optimization (Martens et al. [5], [6], [18]). These
solutions were shown to avoid some of gra-
dient descents’ problems, using which, DNNs
and RNNs were able to be trained on patholog-
ical synthetic datasets which were previously
arduous to learn with other techniques.

Recently Sutskever et. al. [6] trained a spe-
cial kind of RNN named Multiplicative RNNs
(MRNN) that enabled each input unit (charac-
ter) to train their own hidden-to-hidden weight
matrix, augmenting their expressiveness. Using
this new architecture they got very good results
that outperformed standard RNNs.

In this work, we focus on comparing the
performance of N-gram models and a standard
RNN with hidden to hidden loop connections,
see Figure 1a.

RNNs are modeled with equations:

RESEARCH PROJECT IN COMPUTER AND INFORMATION SCIENCE, AUGUST 2014 3

ht = tanh(Whxxt + Whhht−1 + bh) (3)

ot = Wohht + bo (4)

Where xt, ht and ot are the input, hidden and
output units values on time step t respectively,
bh and bo are hidden and output biases, and Wij

are the transformation matrix with the first (i)
and second (j) subindex indicating destination
and origin respectively.

For training the RNNs, we can use backprop-
agation through time (Rumelhart et al. [19]).
This method consists of unfolding the network
for some time-steps t and backpropagating the
error through time (see Figure 1b). However,
training a network with several layers could
make the gradients to explode or vanish. In
order to mitigate this problem we can sparsify
the hidden-to-hidden connections and decrease
the weights of each unit so as to ensure that
ensure that the largest eigenvalue is smaller
than one.

3 METHOD

In this section we describe the methodology
we followed when conducting the experiments.
First, we describe the datasets and the prepro-
cessing steps carried out on them in Section
3.1. Second, we explain how we created the
N-gram models in 3.2. Next, we explain how
we trained the RNN and the hyper-parameters
used in each model (3.3). Finally, we explain
how we compared the performance of the N-
gram models with that of the RNN in Section
3.4.

3.1 Datasets
We needed at least one corpus per language. In
this initial setting we opted for British English
and Spanish language corpora.

The English dataset is part of Wikipedia 2011,
and it contains about one and a half billion
characters. On the other hand, the Spanish
dataset contains half a billion characters and is
part of the “Total body of European Union (EU)
law applicable in the EU Member States” from
the years [1958− 2006]. This corpus is available

(a) General diagram

t(1) t(2) t(T)

Output

Input

Hidden

Woh

Whi

Whh Whh

Woh

Whi

Woh

Whi

(b) Unfolded on time

Fig. 1. RNN diagrams

from the Joint Research Center of the European
Commission [20].

Both datasets were preprocessed and cleaned
as per the following steps:
• All XML and meta-information was re-

moved.
• The Spanish dataset contained the special

character “ñ”, and a large fraction of the
words were accentuated. We therefore de-
cided to replace all occurrencies of ’ñ’ by
’n’ and remove all accents. This was done
in order to avoid possible clues about the
text language.

• Only 86 characters were used in all the
experiments, and we replaced all extra
characters by the number sign #.

• All sentences shorter than fifty charac-
ters were removed (that is because our
RNN was trained with fifty time-steps,
and N-grams were trained with the same

RESEARCH PROJECT IN COMPUTER AND INFORMATION SCIENCE, AUGUST 2014 4

TABLE 1
Initial and cleaned corpus

Language Corpus
Version Sentences Words

English Wikipedia
Original 3.368.700 228.878.857
Cleaned 3.222.670 205.400.638
Spanish JRC
Original 3.136.154 78.481.522
Cleaned 1.826.099 67.516.261

TABLE 2
Training data

Dataset Sentences Characters

en/sp train 2.921.758 899.037.749
en/sp test 730.440 225.019.457
en test 644.980 250.128.490
sp test 365.220 83.510.776

amount of textual data).
• All sentences containing words larger

than thirty characters were removed.
Most of these words were sequences
without semantic meaning like numbers
or hyperlinks. However, smaller invalid
words could not be filtered in our data.

Table 1 is a summary of the corpus before
and after the cleaning process (this table does
not include the initial meta-information and
XML data, it has been previously removed to
show the real size of the corpus).

We used 80% of each corpus for training
while the remaining 20% was used for test-
ing. With these divisions, we created a mixed
corpus that contained all the Spanish data,
and an equal number of randomly selected
sentences from the English dataset. We didn’t
use validation data in all the experiments, as
we only experimented with two different RNN
architectures, and we did not tune their training
hyperparameters.

Table 2 shows the resulting mixed dataset
with half of the data from each language.

More information about these datasets and
their preprocessing steps is available in ap-
pendix ??.

3.2 N-gram models
To generate the N-gram frequency table, we
started from the cleaned training corpus. We
split all training data into all possible character-
level patterns of size n. Each of these patterns
is introduced in a look-up table. If the pattern
already existed in the look-up table, its corre-
sponding frequency was incremented. If not, a
new entry was created with its corresponding
frequency set to 1.

With the frequency table built, we could com-
pute the probability of any N-gram ending with
one of the eighty six characters in constant time.
We only needed to retrieve from the table, all
the eighty six possible patterns and get their
respective frequencies. With these frequencies,
we could compute the MLE or other estimates.

3.3 RNN
We used the first fifty characters of each sen-
tence to train the RNNs. The remainder was not
used in this work as opposed to the N-gram
models that got a larger amount of training
data possibly giving the N-gram models an
advantage 1. The parameters of the RNN were
updated using backpropagation through time.

Specific details about the RNN architecture
used and training procedure are provided in
section 4.

3.4 Performance measure
Standard N-gram models were used as a basis
of comparison to asses the performance of our
RNNs.

All models were trained with a corpus of
mixed language text without any label or order
that might reveal the identity of the language.
After training, these models were tested sepa-
rately on a test set with all languages or only
one of them.

To compare the performance of different
models we used the cross-entropy error mea-
sure:

H(p, q) = −
∑
x

p(x) log q(x) (5)

1. We used only the first fifty characters of each sentence
because of technical reasons in the implementation.

RESEARCH PROJECT IN COMPUTER AND INFORMATION SCIENCE, AUGUST 2014 5

Where p is the real probability mass and q is
our prediction.

Apart from giving us a measure to compare
models, it also can be viewed as the amount
of information needed on average to predict
the next character, expressed in number of bits.
In our case, when trying to predict the next
character of a pattern, the expected amount of
bits to codify the probability distribution of all
eighty six possible characters is about 4.5 nats
(ln(86)) or 6.5 bits (log2(86)).

In this particular case the real probability is
selected to be a Dirac delta function where its
value is one in the actual sample output and
zero otherwise. For this reason, we can reduce
Eq. 5 to being the negative log-probability of
predicting the correct character.

H(p, q) = − log q(xp) (6)

To measure test performance, we used all the
patterns on the test data set of size n for each N-
gram model. We used the first n− 1 characters
as a context and computed the prediction error
on the last character. In the case of RNNs
the initial thirty characters of each sentence
were used as a context while the last twenty
characters were used to compute the error.

4 EXPERIMENTS
During the experiments we first trained the N-
gram models with n varying from one to nine
(inclusive).

Models were trained in an English/Spanish
corpus without labels. After training, these
models were tested separately on English,
Spanish and English/Spanish (mixed) test sets.

4.1 N-grams
As the amount of patterns increases exponen-
tially with size of n, storing 9-grams in a table
would result in the storage of 869 different pat-
terns with their respective probabilities. That
could be a problem if the corpus contained all
possible patterns. However, we have a finite
corpus and the sentences in a specific language
do not allow all the possible combinations of
patterns. This can be seen in the Figure 2 where
the model sizes are in log scale, but the size
growth is not linear (in log scale).

0

10

20

30

40

50

60

70

Log_2(bytes) Log_2(expected bytes)

model

lo
g

_
2

(b
yt

e
s)

Fig. 2. Model and expected sizes in bytes on
a log 2 scale

4.2 RNNs

We trained two different RNNs, one with 300
hidden connections and another one with 500.
Both of them have 86 input and output connec-
tions (representing each of the possible char-
acters). The hidden units compute a hyperbolic
tangent (tanh) of the inputs and their previous
hidden state, and the output units computes a
soft-max in order to make a prediction.

The initial set of weights for input-to-hidden
and hidden-to-output connections was chosen
from a uniform distribution sample from the
interval [−0.1, 0.1]. However, hidden-to-hidden
weights were sparsified. They are initialized
from a normal distribution with zero mean and
unit variance. Only fifteen of the connections
per neuron are conserved, while the rest is set
to zero. After that, the weights are normalized
using spectral normalization. This normaliza-
tion helps preventis weights from exploding or
vanishing when training across several time
steps. We set the spectral radius to 0.95.

The learning rate of all the connections was
0.001, and momentum was 0.5. We did not use
regularization nor learning rate decay.

In order to train with BPTT, we unfolded the
RNNs through fifty time steps, and then used
normal backpropagation to update the weights.

RESEARCH PROJECT IN COMPUTER AND INFORMATION SCIENCE, AUGUST 2014 6

5 RESULTS

In this section we explain the results we
obtained. We analyzed different performance
measures in each subsection. First we compare
their performance in terms of error rate 5.1.
Then, we compare their variance 5.2, model
size 5.3, and computation time 5.4. 2

5.1 Error rate
N-gram models show a decreasing error rate
with increasing value of n until their error starts
increasing from n equal to seven (see Table 3
and set of Figures 3 and 4). The reason is that
as the size of the patterns grow, it becomes less
likely that the patterns in the training set also
appear in the test set. In this case the proba-
bility of the last character is reduced to 1/86,
resulting in a worse prediction than that for
smaller patterns. Concerning the two different
languages, there is a small difference between
their prediction. In case of Spanish, 7-grams
gave the best results, while in English, 6-grams
performed better.

The performance of RNNs increases with the
number of hidden units and number of epochs
(see Figure 3). We got the best results with
100 units and three epochs, which performed
similarly to 5 and 6-grams. But the fact that
increasing the number of epochs decreases the
test error is an indication that the model is not
overfitting the training data. Hence, it should
be possible to decrease the error rate if we had
more computational resources.

If we compare the best N-gram model (7-
gram) and the best RNN model (500 neurons
and 3 epochs), the difference in mean cross-
entropy is in the range of [0.04, 0.8].

If we compare the prediction error on En-
glish and Spanish datasets, we see that Spanish
has a better prediction performance for all the
models (Figure 4c). After analyzing the training
corpus, we realized that the Spanish corpus is
composed of law terms, and some sentences are
really common in this field. Consequently, the
Spanish corpus becomes simpler to learn and
it gets better prediction performance.

2. The results of N-grams from one to three have not been
included in the figures or tables because their performance was
not comparable with the best models.

5.2 Variance
Variance in N-grams is constantly increasing
with respect to the pattern size n. If we focus on
the best N-gram models (6 and 7-grams) their
standard deviation is in the order of 0.05. On
the contrary, RNNs have a larger variance that
does not show any significant variation with
respect to the number of hidden neurons and
epochs. In this case their standard deviation is
about 0.06, which is similar to N-grams with
n = 8.

5.3 Model size
Regarding the model size, N-grams are known
to require an exponential amount of space with
respect to n. But as our training set is lim-
ited and linguistic rules restrict the possible
character combinations, the size seems to stop
growing in an exponential manner (Figure 2).
However, we know that increasing the amount
of training data would increase the N-gram
model size, which is not the case for RNNs.
The number of parameters of our RNNs can be
computed using the next equation:

hidd∗ (in+1)+hidd∗ (hidd+1)+hidd∗out (7)

Where hidd, in, out, are the number of hidden,
input and output units respectively, and the
ones represent the bias terms. In these exper-
iments the largest RNNs have about 300,000
parameters (with five hundred hidden units
= 500 ∗ (86 + 1) + 500 ∗ (500 + 1) + 500 ∗ 86).

We can compare the model size of N-grams
and RNNs by considering the most similar
models with respect to their mean error. These
are 5-grams, 6-grams and rnn500 3 (500 hidden
units and 3 epochs). In these cases the RNN is
between 26 and 79 times smaller than 5 and
6-grams.

5.4 Computation time
Training N-gram models requires linear time
with respect to the text size, it uses constant
time for table look-ups to increase or initialize
its value. Then its training needs roughly a few
hours depending on the value of n. However,
as the table grows in size almost exponentially

RESEARCH PROJECT IN COMPUTER AND INFORMATION SCIENCE, AUGUST 2014 7

TABLE 3
Average and standard deviation of cross-entropy error

lang. 4grams 5grams 6grams 7grams 8grams 9grams rnn300 rnn500 rnn300 2 rnn500 2 rnn300 3 rnn500 3
averages

mix 1.7713 1.4701 1.3273 1.3193 1.3996 1.5361 1.6108 1.5343 1.5244 1.4386 1.4768 1.3984
en 1.7972 1.5144 1.3933 1.4148 1.5310 1.7131 1.7460 1.6806 1.6560 1.5768 1.6112 1.5363
sp 1.7452 1.4259 1.2614 1.2238 1.2680 1.3590 1.4754 1.3881 1.3928 1.3004 1.3424 1.2603
std
mix 0.0342 0.0384 0.0432 0.0520 0.0623 0.0731 0.0666 0.0669 0.0671 0.0670 0.0668 0.0665
en 0.0282 0.0316 0.0361 0.0437 0.0531 0.0626 0.0587 0.0592 0.0590 0.0591 0.0592 0.0588
sp 0.0401 0.0438 0.0488 0.0580 0.0687 0.0788 0.0725 0.0722 0.0728 0.0723 0.0725 0.0722

TABLE 4
Model size on log2 scale

1grams 2grams 3grams 4grams 5grams 6grams 7grams 8grams 9grams rnn300 rnn500
actual 10.10 16.15 20.90 23.87 26.06 27.68 28.88 29.80 30.54 20.12 21.36

expected 8.75 15.44 22.09 28.71 35.30 41.88 48.44 55.00 61.54 17.12 18.36

with n, depending on the implementation and
the memory restrictions, the training time can
increase exponentially and might even become
impossible to train because of space require-
ments. Once it is trained, loading the entire
model in memory can be prohibitive in some
devices and can require a few minutes. Once
loaded, the model can predict the next charac-
ter in constant time it only needs to retrieve
eighty six possible endings and compute their
probabilities.

RNNs, on the other hand, require between
5 and 8 days of training per epoch, but their
memory restrictions are very low. In our case,
we trained two different RNNs for 3 epochs
lasting around 42 days in total (21 on 3 epochs
per model). Nevertheless, once trained, the
model requires very little memory, and each
prediction is done in constant time.

6 DISCUSSION

In this work, we trained RNNs on texts in mul-
tiple languages. After training, the networks
predict the most probable next characters given
an initial context in any of the trained lan-
guages. We analyzed the performance they
achieved without tuning their hyperparame-
ters.

We showed that RNNs got results compa-
rable to 5 and 6 N-grams, while the best N-

gram models where 6 and 7-grams. Further-
more, we saw that while the N-gram mod-
els starts overfitting, RNNs still had room for
improvement through increasing the number
of training epochs, and possibly tuning their
hyperparameters.

Although N-grams got the best results on
these experiments, RNNs have been shown to
get very good results with an extremely small
model size. The RNNs are about 26 to 79 times
smaller than the best N-gram models (2.6MB
vs 490MB respectively). The compression rate
that RNNs can achieve compared to N-grams
can be very useful on small devices with low
space capabilities. Furthermore, the number of
parameters to load the N-grams model can be
prohibitive if we need to load everything in
memory.

Regarding computation time, N-grams are
much faster to train than RNNs (some hours
against more than 5 days respectively). How-
ever, once they are trained, RNNs make pre-
dictions more quickly than N-grams, with the
exception of some N-gram implementations, or
if they are completely loaded in memory and
run in constant time.

We noticed an obvious difference between
the error rate for the Spanish and English test
sets. This problem was likely to have been
caused by the Spanish corpus, which contained

RESEARCH PROJECT IN COMPUTER AND INFORMATION SCIENCE, AUGUST 2014 8

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

4grams 5grams 6grams 7grams 8grams 9grams rnn300 rnn500 rnn300_2 rnn500_2 rnn300_3 rnn500_3

m
e

a
n

 c
ro

s
s
−

e
n

tr
o

p
y
 e

rr
o

r

(a) Test on English and Spanish

1.3

1.4

1.5

1.6

1.7

1.8

1.9

4grams 5grams 6grams 7grams 8grams 9grams rnn300 rnn500 rnn300_2 rnn500_2 rnn300_3 rnn500_3

m
e

a
n

 c
ro

s
s
−

e
n

tr
o

p
y
 e

rr
o

r

(b) Test on English

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

4grams 5grams 6grams 7grams 8grams 9grams rnn300 rnn500 rnn300_2 rnn500_2 rnn300_3 rnn500_3

m
e

a
n

 c
ro

s
s
−

e
n

tr
o

p
y
 e

rr
o

r

(c) Test on Spanish

Fig. 3. Model comparison on different test sets with their mean cross-entropy error

RESEARCH PROJECT IN COMPUTER AND INFORMATION SCIENCE, AUGUST 2014 9

4grams 5grams 6grams 7grams 8grams 9grams rnn300 rnn500 rnn300_2 rnn500_2 rnn300_3 rnn500_3
0

0.5

1

1.5

2

Model

m
e

a
n

 c
ro

s
s
−

e
n

tr
o

p
y
 e

rr
o

r

en/sp en sp

(a) Mean cross-entropy error

4grams 5grams 6grams 7grams 8grams 9grams rnn300 rnn500 rnn300_2 rnn500_2 rnn300_3 rnn500_3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Model

s
td

 c
ro

s
s
−

e
n
tr

o
p
y
 e

rr
o
r

en/sp

en

sp

(b) Standard deviation of cross-entropy error

4grams 5grams 6grams 7grams 8grams 9grams rnn300 rnn500 rnn300_2 rnn500_2 rnn300_3 rnn500_3
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Model

d
if
f
o
f
m

e
a
n
 c

ro
s
s
−

e
n
tr

o
p
y
 e

rr
o
r

mix − en

mix − sp

(c) Cross-entropy difference between mixed, English and Spanish predictions: the upper part indicates
that the error on the mixed corpus is bigger than that on the Spanish corpus, while bottom part
indicates that the error in the mixed corpus is smaller than that on the English corpus.

Fig. 4. Comparison of predictions depending on the language

RESEARCH PROJECT IN COMPUTER AND INFORMATION SCIENCE, AUGUST 2014 10

a large number of law-specific sentences that
are repeated in training and test sets. As an
example, the sentence “Visto el Tratado consti-
tutivo de la Comunidad Europea” is repeated
in the training set 12944 times and in the test
set 3185. This problem can be solved by remov-
ing repetitions. A better solution would be to
augment the training corpus with other texts
available on the internet, such as the Spanish
Wikipedia corpus, in order to mitigate the im-
portance given to repeated sentences.

Further work could focus on improving the
RNNs on this particular task: running more
epochs, tuning their hyperparameters, increas-
ing the training size or adding more languages.
Furthermore, it should be possible to extend the
same approach to other hidden statistics: texts
from different authors, or different categories
(Technology, Economics, Psychology or other
topics), and investigate how RNNs encode this
information in their hidden units.

ACKNOWLEDGMENT

The author would like to thank Vikram Ka-
math, Ehsan Amid, Karmen Dykstra and Antti
Rasmus for their feedback and suggestions on
writing this report.

REFERENCES

[1] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami,
H. Bunke, and J. Schmidhuber, “A Novel Connectionist
System for Unconstrained Handwriting Recognition,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 31, no. 5, pp. 855–868, May 2009.
[Online]. Available:
http://ieeexplore.ieee.org/ielx5/34/4804117/04531750.
pdf?tp=&arnumber=4531750&isnumber=4804117http:
//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=
4531750&tag=1

[2] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech
recognition with deep recurrent neural networks,” May
2013, pp. 6645–6649. [Online]. Available:
http://ieeexplore.ieee.org/ielx7/6619549/6637585/
06638947.pdf?tp=&arnumber=6638947&isnumber=
6637585http://ieeexplore.ieee.org/xpls/abs all.jsp?
arnumber=6638947&tag=1

[3] Y. Bengio, P. Simard, and P. Frasconi, “Learning
long-term dependencies with gradient descent is
difficult.” IEEE transactions on neural networks / a
publication of the IEEE Neural Networks Council, vol. 5,
no. 2, pp. 157–66, Jan. 1994. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/18267787

[4] G. Hinton, S. Osindero, and Y. Teh, “A fast learning
algorithm for deep belief nets,” Neural computation, vol.
1554, pp. 1527–1554, 2006. [Online]. Available:
http://www.mitpressjournals.org/doi/abs/10.1162/
neco.2006.18.7.1527

[5] J. Martens, “Deep learning via Hessian-free
optimization,” Proceedings of the 27th International
Conference on Machine Learning, 2010. [Online]. Available:
http://machinelearning.wustl.edu/mlpapers/paper
files/icml2010 Martens10.pdf

[6] I. Sutskever, J. Martens, and G. Hinton, “Generating text
with recurrent neural networks,” Proceedings of the . . . ,
2011. [Online]. Available: http://machinelearning.wustl.
edu/mlpapers/paper files/ICML2011Sutskever 524.pdf

[7] S. Hochreiter, “Untersuchungen zu dynamischen
neuronalen Netzen,” Master’s thesis, Institut fur
Informatik, Technische . . . , 1991. [Online]. Available:
http://scholar.google.com/scholar?hl=en&btnG=
Search&q=intitle:Untersuchungen+zu+dynamischen+
neuronalen+Netzen#0

[8] M. Zeiler and R. Fergus, “Visualizing and
Understanding Convolutional Networks,” arXiv preprint
arXiv:1311.2901, 2013. [Online]. Available:
http://arxiv.org/abs/1311.2901http:
//arxiv.org/pdf/1311.2901.pdf

[9] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive
deconvolutional networks for mid and high level
feature learning,” 2011 International Conference on
Computer Vision, pp. 2018–2025, Nov. 2011. [Online].
Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6126474

[10] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep
Inside Convolutional Networks: Visualising Image
Classification Models and Saliency Maps,” arXiv preprint
arXiv:1312.6034, pp. 1–8, 2013. [Online]. Available:
http://arxiv.org/abs/1312.6034

[11] T. Brants and A. Franz, “Web 1T 5-gram Version 1
LDC2006T13,” Philadelphia: Linguistic Data
Consortium, 2006.

[12] J. J. Hopfield, “Neural networks and physical systems
with emergent collective computational abilities,”
Proceedings of the National Academy of Sciences of the
United States of America, vol. 79, no. 8, pp. 2554–2558,
Apr. 1982. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/6953413

[13] J. L. Elman, “Distributed representations, simple
recurrent networks, and grammatical structure,”
Machine Learning, vol. 7, no. 2-3, pp. 195–225, Sep. 1991.
[Online]. Available: http://link.springer.com/article/10.
1007/BF00114844http://link.springer.com/content/
pdf/10.1007%2FBF00114844.pdf

[14] K.-i. Funahashi and Y. Nakamura, “Approximation of
dynamical systems by continuous time recurrent neural
networks,” Neural Networks, vol. 6, no. 6, pp. 801–806,
1993. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S089360800580125X

[15] S. Hochreiter and J. Schmidhuber, “Long Short-Term
Memory,” Neural Computation, vol. 9, no. 8, pp.
1735–1780, Nov. 1997. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=
6795963http://www.mitpressjournals.org/doi/abs/10.
1162/neco.1997.9.8.1735

[16] M. Schuster and K. K. Paliwal, “Bidirectional recurrent

http://ieeexplore.ieee.org/ielx5/34/4804117/04531750.pdf?tp=&arnumber=4531750&isnumber=4804117 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4531750&tag=1
http://ieeexplore.ieee.org/ielx5/34/4804117/04531750.pdf?tp=&arnumber=4531750&isnumber=4804117 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4531750&tag=1
http://ieeexplore.ieee.org/ielx5/34/4804117/04531750.pdf?tp=&arnumber=4531750&isnumber=4804117 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4531750&tag=1
http://ieeexplore.ieee.org/ielx5/34/4804117/04531750.pdf?tp=&arnumber=4531750&isnumber=4804117 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4531750&tag=1
http://ieeexplore.ieee.org/ielx7/6619549/6637585/06638947.pdf?tp=&arnumber=6638947&isnumber=6637585 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6638947&tag=1
http://ieeexplore.ieee.org/ielx7/6619549/6637585/06638947.pdf?tp=&arnumber=6638947&isnumber=6637585 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6638947&tag=1
http://ieeexplore.ieee.org/ielx7/6619549/6637585/06638947.pdf?tp=&arnumber=6638947&isnumber=6637585 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6638947&tag=1
http://ieeexplore.ieee.org/ielx7/6619549/6637585/06638947.pdf?tp=&arnumber=6638947&isnumber=6637585 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6638947&tag=1
http://www.ncbi.nlm.nih.gov/pubmed/18267787
http://www.mitpressjournals.org/doi/abs/10.1162/neco.2006.18.7.1527
http://www.mitpressjournals.org/doi/abs/10.1162/neco.2006.18.7.1527
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2010_Martens10.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2010_Martens10.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Sutskever_524.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Sutskever_524.pdf
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Untersuchungen+zu+dynamischen+neuronalen+Netzen#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Untersuchungen+zu+dynamischen+neuronalen+Netzen#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Untersuchungen+zu+dynamischen+neuronalen+Netzen#0
http://arxiv.org/abs/1311.2901 http://arxiv.org/pdf/1311.2901.pdf
http://arxiv.org/abs/1311.2901 http://arxiv.org/pdf/1311.2901.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6126474
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6126474
http://arxiv.org/abs/1312.6034
http://www.ncbi.nlm.nih.gov/pubmed/6953413
http://link.springer.com/article/10.1007/BF00114844 http://link.springer.com/content/pdf/10.1007%2FBF00114844.pdf
http://link.springer.com/article/10.1007/BF00114844 http://link.springer.com/content/pdf/10.1007%2FBF00114844.pdf
http://link.springer.com/article/10.1007/BF00114844 http://link.springer.com/content/pdf/10.1007%2FBF00114844.pdf
http://www.sciencedirect.com/science/article/pii/S089360800580125X
http://www.sciencedirect.com/science/article/pii/S089360800580125X
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6795963 http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6795963 http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6795963 http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735

RESEARCH PROJECT IN COMPUTER AND INFORMATION SCIENCE, AUGUST 2014 11

neural networks,” IEEE Transactions on Signal Processing,
vol. 45, no. 11, pp. 2673–2681, Nov. 1997. [Online].
Available: http:
//ieeexplore.ieee.org/ielx4/78/14188/00650093.pdf?tp=
&arnumber=650093&isnumber=14188http://ieeexplore.
ieee.org/xpls/abs all.jsp?arnumber=650093&tag=1

[17] H. Jaeger and H. Haas, “Harnessing nonlinearity:
Predicting chaotic systems and saving energy in
wireless communication,” Science, vol. 304, no. 5667, pp.
78–80, Apr. 2004. [Online]. Available:
http://www.sciencemag.org/content/304/5667/78http:
//www.ncbi.nlm.nih.gov/pubmed/15064413http://
www.sciencemag.org/content/304/5667/78.full.pdfhttp:
//www.sciencemag.org/content/304/5667/78.short

[18] J. Martens and I. Sutskever, “Learning recurrent neural
networks with hessian-free optimization,” . . . on Machine
Learning (ICML-11 . . . , 2011. [Online]. Available:
http://machinelearning.wustl.edu/mlpapers/paper
files/ICML2011Martens 532.pdf

[19] D. Rumelhart, G. Hinton, and R. Williams, “Learning
representations by back-propagating errors,” Nature,
vol. 323, pp. 533–536, 1986. [Online]. Available:
http://books.google.com/books?hl=en&lr=&id=FJblV
iOPjIC&oi=fnd&pg=PA213&dq=Learning+
representations+by+back-propagating+errors&ots=
zZCp6iI2WQ&sig=omUZ 4jXuKbkZb54ZmhHrAPCEGk

[20] R. Steinberger, B. Pouliquen, and A. Widiger, “The
JRC-Acquis: A multilingual aligned parallel corpus with
20+ languages,” arXiv preprint cs/ . . . , pp. 2142–2147,
2006. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download;
jsessionid=1397BA8B80FE7A34EE883EAE36515AEB?
doi=10.1.1.145.5767&rep=rep1&type=pdfhttp:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
145.5767http://arxiv.org/abs/cs/0609058

Miquel Perelló Nieto received
his B.S. degree in Technical Engineering
on Computer Science from Technical
University of Catalonia in 2011. He
is currently pursuing a double M.S degree
on Artificial Intelligence (from a consortium
between Technical University of Catalonia,
Barcelona University and Rovira i Virgil
University) and M.S on Machine Learning

and Data Mining (from Aalto University School of Science). His
primary research interest is artificial intelligence.

He is a Research Assistant within the Deep Learning and
Bayesian Modeling research group in the department of
Computer Science led jointly by Prof. Juha Karhunen and
Assistant Prof. Tapani Raiko.

PLACE
PHOTO
HERE

Mathias Berglund
received his M.Sc. degree in Industrial
Engineering and Management in 2011
from Aalto University and his MSc degree
in Management and Economics from
the London School of Economics in 2009.

He is currently a PhD student within
the Deep Learning and Bayesian Modeling
research group in the department of

Computer Science led jointly by Prof. Juha Karhunen and
Assistant Prof. Tapani Raiko.

Tapani Raiko received his
D.Sc. degree in Computer Science in 2006
from Helsinki University of Technology.
He is an Assistant Professor (tenure
track) and an Academy Research Fellow
at Aalto University School of Science.
His research focus is deep learning.

http://ieeexplore.ieee.org/ielx4/78/14188/00650093.pdf?tp=&arnumber=650093&isnumber=14188 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=650093&tag=1
http://ieeexplore.ieee.org/ielx4/78/14188/00650093.pdf?tp=&arnumber=650093&isnumber=14188 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=650093&tag=1
http://ieeexplore.ieee.org/ielx4/78/14188/00650093.pdf?tp=&arnumber=650093&isnumber=14188 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=650093&tag=1
http://ieeexplore.ieee.org/ielx4/78/14188/00650093.pdf?tp=&arnumber=650093&isnumber=14188 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=650093&tag=1
http://www.sciencemag.org/content/304/5667/78 http://www.ncbi.nlm.nih.gov/pubmed/15064413 http://www.sciencemag.org/content/304/5667/78.full.pdf http://www.sciencemag.org/content/304/5667/78.short
http://www.sciencemag.org/content/304/5667/78 http://www.ncbi.nlm.nih.gov/pubmed/15064413 http://www.sciencemag.org/content/304/5667/78.full.pdf http://www.sciencemag.org/content/304/5667/78.short
http://www.sciencemag.org/content/304/5667/78 http://www.ncbi.nlm.nih.gov/pubmed/15064413 http://www.sciencemag.org/content/304/5667/78.full.pdf http://www.sciencemag.org/content/304/5667/78.short
http://www.sciencemag.org/content/304/5667/78 http://www.ncbi.nlm.nih.gov/pubmed/15064413 http://www.sciencemag.org/content/304/5667/78.full.pdf http://www.sciencemag.org/content/304/5667/78.short
http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf
http://books.google.com/books?hl=en&lr=&id=FJblV_iOPjIC&oi=fnd&pg=PA213&dq=Learning+representations+by+back-propagating+errors&ots=zZCp6iI2WQ&sig=omUZ_4jXuKbkZb54ZmhHrAPCEGk
http://books.google.com/books?hl=en&lr=&id=FJblV_iOPjIC&oi=fnd&pg=PA213&dq=Learning+representations+by+back-propagating+errors&ots=zZCp6iI2WQ&sig=omUZ_4jXuKbkZb54ZmhHrAPCEGk
http://books.google.com/books?hl=en&lr=&id=FJblV_iOPjIC&oi=fnd&pg=PA213&dq=Learning+representations+by+back-propagating+errors&ots=zZCp6iI2WQ&sig=omUZ_4jXuKbkZb54ZmhHrAPCEGk
http://books.google.com/books?hl=en&lr=&id=FJblV_iOPjIC&oi=fnd&pg=PA213&dq=Learning+representations+by+back-propagating+errors&ots=zZCp6iI2WQ&sig=omUZ_4jXuKbkZb54ZmhHrAPCEGk
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1397BA8B80FE7A34EE883EAE36515AEB?doi=10.1.1.145.5767&rep=rep1&type=pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.145.5767 http://arxiv.org/abs/cs/0609058
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1397BA8B80FE7A34EE883EAE36515AEB?doi=10.1.1.145.5767&rep=rep1&type=pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.145.5767 http://arxiv.org/abs/cs/0609058
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1397BA8B80FE7A34EE883EAE36515AEB?doi=10.1.1.145.5767&rep=rep1&type=pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.145.5767 http://arxiv.org/abs/cs/0609058
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1397BA8B80FE7A34EE883EAE36515AEB?doi=10.1.1.145.5767&rep=rep1&type=pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.145.5767 http://arxiv.org/abs/cs/0609058
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1397BA8B80FE7A34EE883EAE36515AEB?doi=10.1.1.145.5767&rep=rep1&type=pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.145.5767 http://arxiv.org/abs/cs/0609058

	N-gram models
	Recurrent Neural Networks
	Method
	Datasets
	N-gram models
	RNN
	Performance measure

	Experiments
	N-grams
	RNNs

	Results
	Error rate
	Variance
	Model size
	Computation time

	Discussion
	References
	Biographies
	Miquel Perelló Nieto
	Mathias Berglund
	Tapani Raiko

